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Section 7: Foundations of probability and statistieal inference
Firgen HUMBURG, SchleiBheimerstr. 173, D-8000 Minchen 40, Germany West.

A NOVEL AXIOM OF INDUCTIVE LOGIC WHICH IMPLIES
A RESTRICTION OF THE CARNAF PARAMETER X .

HOBAA AXWOMA WMHVKTHBHOW AOTUKY, ¥3 KOTOPON
CIEAYET OTPAHMUEHWE KAPHATICKOTO BDAPAMETPA A .

Pemome: Mok fokna[ OCHOBMLBAETCS HA CASAYVIONSM DEIYRLTATE K3 MOen

kuuru & 7: Ecmu wm npunmMeM KAPHAHOCKYI0 éyHxuyum ¢ ) OfS MHTEDNDETHPOBAHHON
A3LIKOBON CUCTEeME! L, TO Ml TAKNE HOMNKHE TDHHRTL, %TO LAXS 37T0H  H3LIKOBONR
ecucremst L cymecrTsyer 06peXTUBEAS BEpPOSTHOCTL P. — TOrga mil MOMEM CDABHUTL
06LKTUBHYI YBEDEHHOCTh P KOHGWICHTHOPO TECTA C COOTBETCTBYWHEN JOTKHHYECKON
BepoarRoCcTsie B KAPHAHCKOW cucteme. 310 cpaspenne [{ABT HUXHIOR U 8D XHOD
TPANULY AN A. — JTO — IHAYUTENBHLI DC3YNRTAT, TOCKONBK(O O TIOKAILIBAET, YTC
uens HHAykrusaow Jorumkn 7O KpaRHed Mepe And nNPOCTON $YHKYMW C), AOCTATAEMA.
Uapyerunas Jlornka uMeeT TO-BUAMUMOMY bHoabMOE sHAuewue naas WCKYCCTBEHHOR
Wwrenanuresnun u Yuaswxcs Mawwu  (Learning Machines); B 370M CoMucAe umeer
MO~ BARUMOMY JAXEe TPOCTAf $YHKIUT ¢ TDPAKTHYECKOE BHAYSHWEe. B YRCTHOCTH M
yeupgeM, wro wpasuno JIAINIACA, xoropoe cooreeTcTByeT KAPHATICKOW éymxiun cF,
He HeNCTBUTENLHG, eChau y HAC Homece YeTLIDEX OCHOBHLRIX TDEANKATOB.

A1) Suramary: My paper Is based on the following result of my book & 7 If
we accept the CARNAP function ¢ for an interpreted language sysiem L we
accept also that for this system L there exists an obfective probability p. -
Now it is possible to compare the obfective certainty P of the confidence test
with the corresponding Jogical probability in the CARNAP system. This
comparison gives us a lower and an upper bound of A, ~ This result is
fmportant in so far as it shows that the aim of Inductive Logic is attainable
at least for the simple function . Inductive Logic seems to be important for
Artificial Intelligence or Learning Machines;, already the simple function o
seems to have practical importance in this sense:; in particular we will see
that the LAPLACE rule which corresponds to CARNAP's function ¢* is not
acceptable if we have more than four logically disjoint fundamental
predicates.

(2) oOur considerations concern the system L., of CARNAP; it is simple to
relate this system to a set-theoretic field and then consider the o-field F
generated by this. field. By the usual measure theory the functions my , ¢x
are uniquely extendible from L, to F . ~ First I will briefly explain the
result of my book ¢ 7 why the hdequacy of the functions m23 , ¢35 for a
system L, will imply that there exists an objeciive probability p for the
related o—-field F ‘

Let hnp{M) be the relative frequency of a molecular predicate M in 2
sequence of observations of the individuals a,, a,, 2, ... . Then we have
for m~functions which are symmeiric relative to the individuals the following
theorem:

Theorem 1: There exists a function P{M) with the property

mihg(M) » P(M)) = 1 .
We have logical probability one that the relative frequencies converge to a
Hmit. The next theorem justifies why we are entiiled to eall this limit P
objective probability:



2

Theorem 2: We define, based on P(M), a polynomial distribution p on F
with the property p(Pjaj»:=P(Pj}. Let mapn be the my conditional on n obser—
vations, f.e.

Byp (A} = C)\(R,Piial...Pinan) .

if the individuals are denumerated in the order of their observation; then we
have: ma{mip > D) = 1.

We see that the objective probability distribution p Is the limit of. the
conditional probabilities. after infinitely many observations. Of course we de
not know p, but we know its inner structure - that it is 2 polynomial
distribution. If we are only interested in the events described by one
molecular predicate M and its negation, p is the binomizl distribution.
For more details see my book ¢+ 7. .
(3) We may now compare the objective certainty of the confidence test with
the corresponding logical probability and we will see that this gives a
restriction of A,

We first state the BERNOULLI inequality:

pIP(M) — hp(M)! = &) = 1/d4Ne® |

This inequality permits the confidence estimation: If we assume the
hypothesis IP(M)-hp(M)}! £ = , the probability of am error is at most
1/4N=2, .

In statistical practice, one does not use the BERNOULLI inequality,
because it is & very crude estimation. But to formulate a preliminary postu-—
late, the bound for the confidence test given by the BERNOULLI inequality is
useful, :

The statement I1P(M)-hgp(M)I & & describes an event of our o-—field F,
because P(M} is defined as the limit of hy(M). Therefore the following logical
probability is determind: c¢(U/PM) - x/nl £ & |, hy(M)=r/n) .

It seems plausible to demand that only siuch c-functions are admitted
for which this logical prebability is at least as great as the bound given by
the BERNOULLI inequality for the above confidence test; hence we have the
following preliminary postulate:

Postulate: Only c—Tfunctions are admiited for which, for all M, r, n, =
the following inequality is wvalid:

c(IP(M} — r/n! £ =, hp{M)=r/n) = 1-1/4n=? |
{4) The distribntion m(P(M) £ X) is given by the DE FINETTI representation
of the funetion m; to evaluate the above postulate we need therefore the DE
FINETTI representation of the TIfunctions my. — Using the DE FINETTI
representation the abeve postulate for the functions e, is equivalent to the
following integral inequality:
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r/nts . 1
I oz (i-aBin-tax pop 2t -x) B rax s 1-1/4ns® -
r/n-= o

er=(Aw/ky~1, B:=((k-w)}/K)-1, w:=logical width of M, k:=number of logically
disjoint fundamental predieates.

The left side of the above inequality is the incomplete Beta—function
which cannot be integrated analytically.

The evaluation of the inequality by compuier gives the result:
A=8 for k=2, A4 Tor k=3, =3 for 4£k<8, 242 for T£k<£i77, 2=1.5 for k=178.

The violation of the above ineguality for larger values of X occurs in
the domain n£20. I have only tested integral values of A, znd once the value
1.5 . That the inequality is fulfilied for the given wvalues has been tesied up
to n=1000. I am still seeking an ansalytical proof that the inequality is also
fulfilled for the given wvalues of A for all large n; till yat I do not have such
a proof.
{6} 'The Axiom: Now 1 will briefly develop the announced axiom, which is
based on an exact calculation of the objective certainty of the eonfidence
test. The exact confidence test is characterized as folilows: Depending on the
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oecurring relative frequency r/n  at n observations and the chosen objective
certainty P we determine the numbers pu{r,n,P) , po{r,n,P} . The confidence
test consits in the proposition that we have for the objective probability
P(M): pul{r,n,P) £ P{(M) ¢ po{r.n,P) . The bounds pu, po are determined &s
solutions of the following equations:

n . . r . .
'z (Dipad(i-pw)n-i = g, ,E{}{Iil)pol(l—po}“"iL =E, E:={1-P}/2 .
1=r 1= .

- These. solutions we determine by computer. — This confidence test has the
objective certainty P; that means: Independently of the value of P{M), we
always have an objective probability at least as great as P that we will
have: pu(r,n.P} € P{M) £ po(r,n,P} ; formally:
plir: pulr,n,P) £ P(M) = po{r,n,P}i} 2 P .

For more deiails see *.

We can now caleculate the logical probability of this confidence test, ie

ealpufr,n,P} £ P(4) < polr,n,P) , hy{di=r/n) ,

whick Is the integral of section (4) taken from pu to po instead of from
r/m-= to r/nts . .
) We could now apply the same postulate as in section (3), namely that
the logical probabliity of this confidence test is at least as great as the
objective certainty and we would get by it sharper upper bounds for A than
we have in section (4), for instance the foilowing results: A42.5 for k=2,
x£1.2 for k=100.

Now it does not seem reasonable to demand that the logieal probability
of ihis confidence test be equal to or greater than the ohjective certainty P,
although as mentioned this postulate is mathematically possible. It seems
more convincing to demand that the deviation Dbetween these iwo
probabilities be as small as possible. Therefore we look for that A, for which
the following quantity y is minimal:

vin, B, = ’éﬁtp - exlpulr,n,P) € PO < po(r,n,P} , hy(M)=r/n})2 .
T

Having calculated this quantity y, I have discovered that we have
" independently of n, P, with 80% = P = 99.9%, nearly always the same
minimum of y. The following graph shows for instance y(n,P,A) with ¥
dependent on A for k=2, P=95% and n=5 up to n=1000;

k=2 P=9,5E-891 Quadratic Horw ‘,-:ff !
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For X=2 and the different values of P, 80% < P = 99.9%,. the above
minimg of y lie between 3.0 and 3.8. For k=100 and the logical width w=1



the minima lie between 1.5 and 1.9,

Because one may think that the use of the guadratic norm in
caleulating y as above is a bit arbitrary, I have calculated v also for the
linear and the TSCHEBISCHEV norm with the following result: The minima are
shifted only a bit ( about 0.5) as compared with the minima of the quadratic
norm; but the results are not so beautiful as for the quadratic norm: the
minima for the different n eoscillate a bit; they do not lie so0 impressively in
one vertical line as for the guadratic norm.

Hence we present the following axiom:

Axiom: We presuppose that we have inductive probability functions
which are symmetric relative to the individuals and depend on some
parameters., Then we demand: Only those parameters are admissible for which
the gquadratic deviation of the logical probability from the obJef:tive certainty
of the confidence test has a minimum.

{6} The application of the axiom to CARNAP's function cy gives, as already
mentioned, for k=2 the following result: 3.0 £ A £ 3.8 for k=2.

I k is greater than 2 the situation is more complicated because we can
form molecular predicates. The integrand in the integral of section (4)
depends on the relative logieal width w/k. If we have a molecular predicate
M with w/k=1/2, then the same values of A are optimal as those we have
according to the axiom for k=2. Therefore we have a larger spread of
admissible X for k>2. For k2100 we get, according to the result mentioned in
section (5), the following spread of admissible »: 1.5 £ X & 5.8 for k>100.

For k between 2 and 100 we have a continuous variation of the two
bordering domajns, which I will not present in this paper.

(7} 1t is obvious that the axiom is also applicable to the more complicated
functions of CARNAP as well as to the HINTIKKA functions.

(8) For their contribution to this paper I thank Werner v. ZEPPELIN,

Dr. Eckehart K6HLER and my wife Angelika HUMBURG.
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